gynb1.com

Équation Du Second Degré Exercice Corrigé Mathématiques

Pour quelle(s) valeur(s) du paramètre $m$ l'équation ci-dessus admet-elle une unique solution? 16: Problème se ramenant à une équation du second degré - Première Trouver tous les triangles rectangles dont les mesures des côtés sont des entiers consécutifs.

Équation Du Second Degré Exercice Corrigé Mathématiques

-\dfrac 12 x^2+\dfrac 32x-\dfrac 98=0$ $\color{red}{\textbf{b. }} -\dfrac 1{10}x^2+\dfrac 15=-\dfrac 1{10}x$ $\color{red}{\textbf{c. }} 1, 3x^2+0, 2x+2, 6=0$ $\color{red}{\textbf{d. }} 2x^2-3x=0$ 10: Intersection de 2 courbes & équation du second degré - Première Spécialité maths S ES STI On a tracé la parabole représentant la fonction $f:x\to x^2+2x-1$ et la droite d'équation $y= x+2$. Résoudre graphiquement $x^2+2x-1=x+2$. Résoudre algébriquement $x^2+2x-1= x+2$. 11: Discriminant pas toujours utile pour résoudre des équations du second degré - Première Spécialité maths - S ES STI Résoudre sans calculer le discriminant les équations suivantes dans $\mathbb{R}$: $\color{red}{\textbf{a. }} 2x^2 - 6 = 0$ $\color{red}{\textbf{b. }} 4x^2 - 6x = 0$ $\color{red}{\textbf{c. }} x^2 + 2 = 0$ $\color{red}{\textbf{d. }} (2x - 1)^2= 25$ 12: Tableau de variations & fonction du second degré - Première Spécialité maths S ES STI On donne le tableau de variations d'une fonction $f$ du second degré. Proposer une valeur pour le?

Équation Du Second Degré Exercice Corrigé Pdf

telle que: Le discriminant de l'équation $f(x)=0$ soit strictement positif. Le discriminant de l'équation $f(x)=2$ soit strictement négatif. 13: Distance d'un point à une courbe & second degré - Première Dans un repère orthonormé, on a tracé la courbe $\mathscr{C}$ de la fonction racine carrée et $\rm A$ est le point de coordonnées $(2;0)$. Déterminer graphiquement quel est le point de $\mathscr{C}$ qui est le plus proche de $\rm A$. Refaire la question 1) par le calcul. 14: Utiliser le discriminant - Première Soit une fonction $f$ définie sur $\mathbb{R}$ par $f(x)=ax^2+bx+c$ avec $a\ne 0$. Son discriminant est noté $\Delta$, sa courbe est la parabole notée $\mathscr{P}$ et son sommet est noté $\rm S$. Si $a>0$ et $\Delta \lt 0$, que peut-on dire du sommet $\rm S$? Si $\Delta \gt 0$ et l'ordonnée de $\rm S$ est positive, que peut-on dire de $a$? Si $a$ et $c$ sont non nuls et de signes contraires, $\mathscr{P}$ coupe combien de fois l'axe des abscisses? 15: Equation du second degré dépendant d'un paramètre - Première Soit $m$ un nombre réel, on considère l'équation: $x^2 + mx + m + 1 = 0$.

Équation Du Second Degré Exercice Corrige

Donc $P(4)=a(4-5)^2-2=-4 \ssi a-2=-4\ssi a=-2$. Ainsi $P(x)=-2(x-5)^2-2$ (forme canonique). La parabole ne coupe pas l'axe des abscisses: il n'existe pas de forme factorisée. La parabole passe par les points $A(-3;0)$ et $(1;0)$. Par conséquent $Q(x)=a(x+3)(x-1)$. De plus, le point $C(2;3)$ appartient à la parabole. Donc $Q(2)=a(2+3)(2-1)=3 \ssi 5a=3 \ssi a=\dfrac{3}{5}$ Ainsi $Q(x)=\dfrac{3}{5}(x+3)(x-1)$ (forme factorisée) L'abscisse du sommet est $\dfrac{-3+1}{2}=-1$. $Q(-1)=-\dfrac{12}{5}$. Par conséquent $Q(x)=\dfrac{3}{5}(x+1)^2-\dfrac{12}{5}$ (forme canonique). Le sommet de la parabole est $M(3;0)$. Ainsi $R(x)=a(x-3)^2$. On sait que le point $N(0;3)$ appartient à la parabole. Donc $R(0)=a(-3)^2=3 \ssi 9a=3\ssi a=\dfrac{1}{3}$. Par conséquent $R(x)=\dfrac{1}{3}(x-3)^2$ (forme canonique et factorisée). Exercice 4 Résoudre chacune de ces équations: $2x^2-2x-3=0$ $2x^2-5x=0$ $3x+3x^2=-1$ $8x^2-4x+2=\dfrac{3}{2}$ $2~016x^2+2~015=0$ $-2(x-1)^2-3=0$ $(x+2)(3-2x)=0$ Correction Exercice 4 On calcule le discriminant avec $a=2$, $b=-2$ et $c=-3$ $\begin{align*} \Delta&=b^2-4ac \\ &=4+24 \\ &=28>0 L'équation possède donc deux solutions réelles: $x_1=\dfrac{2-\sqrt{28}}{4}=\dfrac{1-\sqrt{7}}{2}$ et $x_2=\dfrac{1+\sqrt{7}}{2}$ $\ssi x(2x-5)=0$ Un produit de facteurs est nul si, et seulement si, un de ses facteurs au moins est nul.

Équation Du Second Degré Exercice Corrigé Dans

Exercice 1 Soit $h$ la fonction définie sur $\R$ par $h(x)=5x^2-3x-2$. Donner la forme canonique de $h(x)$. Factoriser $h(x)$. En déduire parmi les graphiques suivants lequel est celui de la représentation graphique de la fonction $h$. Justifier. Donner alors les coordonnées des points remarquables placés sur la figure correspondante.

$$\mathbf{1. } \ xy''+2y'-xy=0\quad\quad \mathbf{2. } \ x(x-1)y''+3xy'+y=0. $$ Enoncé Soit $(E)$ l'équation différentielle $$2xy''-y'+x^2y=0. $$ Trouver les solutions développables en série entière en 0. On les exprimera à l'aide de fonctions classiques. A l'aide d'un changement de variables, résoudre l'équation différentielle sur $\mathbb R_+^*$ et $\mathbb R_-^*$. En déduire toutes les solutions sur $\mathbb R$. Enoncé Soit l'équation différentielle $y''+ye^{it}=0$. Montrer qu'elle admet des solutions $2\pi-$périodiques. Les déterminer. Enoncé Soit $E$ le $\mathbb C$-espace vectoriel des applications de classe $C^\infty$ de $\mathbb R$ dans $\mathbb C$. On définit $\phi:E\to E$ par \begin{eqnarray*} \phi(f):\mathbb R&\to&\mathbb R\\ t&\mapsto& f'(t)+tf(t). \end{eqnarray*} Déterminer les valeurs propres et les vecteurs propres de $\phi$. Faire de même pour $\phi^2$. En déduire les solutions de l'équation différentielle $$y''+2xy'+(x^2+3)y=0. $$ Enoncé Déterminer une équation différentielle linéaire homogène du second ordre admettant pour solutions les fonctions $\phi_1$ et $\phi_2$ définies respectivement par $\phi_1(x)=e^{x^2}$ et $\phi_2(x)=e^{-x^2}$.